Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dissolved inorganic carbon (DIC) and its stable carbon isotope (δ13C‐DIC) are valuable parameters for studying the aquatic carbon cycle and quantifying ocean anthropogenic carbon accumulation rates. However, the potential of this coupled pair is underexploited as only 15% or less of cruise samples have been analyzed forδ13C‐DIC because the traditional isotope analysis is labor‐intensive and restricted to onshore laboratories. Here, we improved the analytical precision and reported the protocol of an automated, efficient, and high‐precision method for ship‐based DIC andδ13C‐DIC analysis based on cavity ring‐down spectroscopy (CRDS). We also introduced a set of stable in‐house standards to ensure accurate and consistent DIC andδ13C‐DIC measurements, especially on prolonged cruises. With this method, we analyzed over 1600 discrete seawater samples over a 40‐d cruise along the North American eastern ocean margin in summer 2022, representing the first effort to collect a large dataset ofδ13C‐DIC onboard of any oceanographic expedition. We evaluated the method's uncertainty, which was 1.2 μmol kg−1for the DIC concentration and 0.03‰ for theδ13C‐DIC value (1σ). An interlaboratory comparison of onboard DIC concentration analysis revealed an average offset of 2.0 ± 3.8 μmol kg−1between CRDS and the coulometry‐based results. The cross‐validation ofδ13C‐DIC in the deep‐ocean data exhibited a mean difference of only −0.03‰ ± 0.07‰, emphasizing the consistency with historical data. Potential applications in aquatic biogeochemistry are discussed.more » « less
-
Tide and salinity data collected at minute intervals over multiple semidiurnal tides were used to investigate the source of water (e.g., seawater, river, groundwater and rain) and their relative timing in mixing at the mouth of a river, a tidal creek at mid-estuary and a tidal creek at the shoreline at the head of a tropical mangrove estuary. Our objectives were to document the temporal changes in tide induced water level changes and salinity at each location and to use the relationship between salinity and water level to elucidate the sources of water and the timing of different sources of water in the hydrologic mixing processes. The data trends in tide vs. salinity (T-S) plots for the river mouth revealed mixing with seawater during rising tides and freshwater diluted seawater (brackish) drainage from the mangrove forest during ebb tides. In the mangrove creek at mid-estuary, the data trends in the T-S plots for rising tides initially showed constant salinity, followed by sharp rises in salinity to peak tide caused by seawater intrusion. The salinity decreased precipitously at the start of tidal ebbing due to influx of freshwater (rain) diluted brackish water from the mangrove forest. The data trends in the T-S plots for the tidal creek at the shoreline located at the estuary head showed constant salinity which decreased only near peak rising tide because of river dilution. During tidal ebbing, the salinity further decreased from groundwater influx before increasing to background salinity, which stayed constant to low tide. Establishing T-S patterns for multiple locations in mangrove estuaries over sub-tidal to tidal scales define the expected salinity variations in seawater-freshwater mixing which can be used to (1) establish baseline hydrologic and salinity (hydrochemical) conditions for temporal and spatial assessments and (2) serve to guide short to long-term sampling regimes for scientific studies and estuarine ecosystem management.more » « less
An official website of the United States government
